Quantifying amino acid conformational preferences and side-chain-side-chain interactions in beta-hairpins.

نویسندگان

  • Scott T Phillips
  • Giovanni Piersanti
  • Paul A Bartlett
چکیده

The intrinsic conformational biases of individual amino acids and their interstrand side-chain-side-chain (SC-SC) interactions both contribute to the stability of beta-sheets. The relative magnitudes of these effects have been difficult to assess in the context of folded proteins, where tertiary contacts complicate the quantitative analysis of local effects. We now report the results of such an analysis in a much simpler system, a short, stabilized beta-hairpin structure where intrastrand (conformational) and interstrand (SC-SC) influences can be distinguished in the absence of competing protein tertiary interactions. A comprehensive comparison of all pairwise combinations of 11 N-terminal and 7 C-terminal amino acids within an 8-residue, @-tide-stabilized [in which @ denotes the 1,2-dihydro-3(6H)-pyridinyl unit] beta-hairpin reveals distinct differences between the various pairings and shows that the intrastrand and interstrand effects are of comparable magnitude in contributing to the stability of the folded forms over the unfolded forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein design simulations suggest that side-chain conformational entropy is not a strong determinant of amino acid environmental preferences.

Loss of side-chain conformational entropy is an important force opposing protein folding and the relative preferences of the amino acids for being buried or solvent exposed may be partially determined by which amino acids lose more side-chain entropy when placed in the core of a protein. To investigate these preferences, we have incorporated explicit modeling of side-chain entropy into the prot...

متن کامل

Role of electrostatic screening in determining protein main chain conformational preferences.

Amino acids display significant variation in propensity for the alpha R-helical, beta-sheet, and other main chain conformational states in proteins and peptides. The physical reason for these preferences remains controversial. Conformational entropy, steric factors, and the hydrophobic effect have all been advanced as the dominant underlying cause. In this work, we explore the role of a fourth ...

متن کامل

NMR analysis of main-chain conformational preferences in an unfolded fibronectin-binding protein.

A 130-residue fragment of the Staphylococcus aureus fibronectin-binding protein has been found to exist in a highly unfolded conformation at neutral pH. Measurement of experimental NMR 3JHNalpha coupling constants provides evidence for individual residues having distinct main-chain conformational preferences that are dependent both on the amino acid concerned and on neighbouring residues in the...

متن کامل

تعیین اپی توپ های ناپیوسته زنجیره سبک ایمونوگلوبولین انسان توسط ایمونولوژی محاسبه ای

Background: Immunoglobulins are a group of proteins that have important role in defense against microorganisms. Immunoglobulins consist of heavy and light chains. In human, immunoglobulin light chain comprises of two isotypes: Kappa (K) and lambda (λ) based on amino acid differences in carboxylic end of their constant region. Marked changes in the K to λ ratio can happen in monocl...

متن کامل

Understanding the physical basis for the side-chain conformational preferences of methionine.

Methionine (Met) is a structurally versatile amino acid most commonly found in protein cores and at protein-protein interfaces. Thus, a complete description of the structure of Met is important for a fundamental understanding of protein structure and design. In previous work, we showed that the hard-sphere dipeptide model is able to recapitulate the side-chain dihedral angle distributions obser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 39  شماره 

صفحات  -

تاریخ انتشار 2005